Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rev Mar Sci ; 8: 185-215, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515811

RESUMO

Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.


Assuntos
Carbono/análise , Água do Mar/química , Clima , Oceanografia/instrumentação , Navios , Temperatura , Movimentos da Água
3.
Proc Natl Acad Sci U S A ; 94(16): 8292-9, 1997 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-11607736

RESUMO

Approximately 250,000 measurements made for the pCO2 difference between surface water and the marine atmosphere, DeltapCO2, have been assembled for the global oceans. Observations made in the equatorial Pacific during El Nino events have been excluded from the data set. These observations are mapped on the global 4 degrees x 5 degrees grid for a single virtual calendar year (chosen arbitrarily to be 1990) representing a non-El Nino year. Monthly global distributions of DeltapCO2 have been constructed using an interpolation method based on a lateral advection-diffusion transport equation. The net flux of CO2 across the sea surface has been computed using DeltapCO2 distributions and CO2 gas transfer coefficients across sea surface. The annual net uptake flux of CO2 by the global oceans thus estimated ranges from 0.60 to 1.34 Gt-Cyr-1 depending on different formulations used for wind speed dependence on the gas transfer coefficient. These estimates are subject to an error of up to 75% resulting from the numerical interpolation method used to estimate the distribution of DeltapCO2 over the global oceans. Temperate and polar oceans of the both hemispheres are the major sinks for atmospheric CO2, whereas the equatorial oceans are the major sources for CO2. The Atlantic Ocean is the most important CO2 sink, providing about 60% of the global ocean uptake, while the Pacific Ocean is neutral because of its equatorial source flux being balanced by the sink flux of the temperate oceans. The Indian and Southern Oceans take up about 20% each.

4.
Science ; 227(4691): 1224-6, 1985 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17757865

RESUMO

Gas-exchange processes control the uptake and release of various gases in natural systems such as oceans, rivers, and lakes. Not much is known about the effect of wind speed on gas exchange in such systems. In the experiment described here, sulfur hexafluoride was dissolved in lake water, and the rate of escape of the gas with wind speed (at wind speeds up to 6 meters per second) was determined over a 1-month period. A sharp change in the wind speed dependence of the gas-exchange coefficient was found at wind speeds of about 2.4 meters per second, in agreement with the results of wind-tunnel studies. However, the gas-exchange coefficients at wind speeds above 3 meters per second were smaller than those observed in wind tunnels and are in agreement with earlier lake and ocean results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...